Step of Proof: linorder_le_neg
12,41
postcript
pdf
Inference at
*
I
of proof for Lemma
linorder
le
neg
:
T
:Type,
R
:(
T
T
).
Linorder(
T
;
x
,
y
.
R
(
x
,
y
))
(
a
,
b
:
T
. (
R
(
a
,
b
))
strict_part(
x
,
y
.
R
(
x
,
y
);
b
;
a
))
latex
by ((GenRepD)
CollapseTHENA ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n
C
)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
1.
T
: Type
C1:
2.
R
:
T
T
C1:
3. Linorder(
T
;
x
,
y
.
R
(
x
,
y
))
C1:
4.
a
:
T
C1:
5.
b
:
T
C1:
6.
R
(
a
,
b
)
C1:
strict_part(
x
,
y
.
R
(
x
,
y
);
b
;
a
)
C
2
:
C2:
1.
T
: Type
C2:
2.
R
:
T
T
C2:
3. Linorder(
T
;
x
,
y
.
R
(
x
,
y
))
C2:
4.
a
:
T
C2:
5.
b
:
T
C2:
6. strict_part(
x
,
y
.
R
(
x
,
y
);
b
;
a
)
C2:
R
(
a
,
b
)
C
.
Definitions
x
,
y
.
t
(
x
;
y
)
,
t
T
,
P
Q
,
P
&
Q
,
P
Q
,
x
(
s1
,
s2
)
,
P
Q
,
,
x
:
A
.
B
(
x
)
Lemmas
linorder
wf
,
strict
part
wf
,
not
wf
origin